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Abstract 

It is shown that the particular generalization of the de Rham complex to smooth Berezin-Leites- 
Kostant supermanifolds proposed in Voronov and Zorich (1986, 1988) and Voronov (199 1) is not 
self-consistent. Some additional conditions are needed in order to make it work. It is proved that 
when these conditions are taken into account the cohomology of the resultant complex is isomorphic 
to the usual de Rham cohomology of the underlying manifold. 

Subj. Class.: Non-commutative geometry 
1991 MSC: 14FlO. 14F40,14H99,58AlO. 58A50 
Keywords: Differentials and other special sheaves; De Rham cohomology; (Co)homology theory; 
Differential forms; Supermanifolds and graded manifolds 

1. Introduction 

Supermanifold theory has its roots in the fact that quantum field theory describes fermions 
at the classical level by anticommuting fields. The pioneering work of Berezin in the early 
1970s lead to the conclusion that both, commuting and anticommuting variables, should 
appear on equal footing in supermanifolds. Several theories of supermanifolds were de- 
veloped, and theoretical physicists soon requested the appropriate - and presumably new 
_ mathematical tools to understand the geometry and the topology of supermanifolds in 
order to provide solid foundations for their physical content. Thus, since the origins of the 
subject, several analogs of classical geometrical and topological structures have been gener- 
alized to the various theories of supermanifolds (Lie superalgebras and their representations; 
deformations of complex supermanifolds; Berezinian integration; Serre duality; etc., just 
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to mention a few developments). This article, in particular, deals with the generalization 
proposed in [30-321 of the de Rham cohomolgy to the category of smooth Berezin-Leites- 
Kostant supermanifolds. We actually show that the definition of such de Rham cohomology 
is incomplete as given in those references, but that there is a unique way of turning it into 
a consistent one. After supplying the definition with the appropriate conditions, we show 
that the resulting de Rham cohomology is isomorphic to the usual de Rham cohomology 
of the underlying manifold. Thus, in spite of what had been conjectured in [30-321, this 
cohomology is not sensitive to the superstructure and cannot be used as a tool to encode the 
information given by the fermionic (anticommuting) variables. 

It is worth saying a few words about the background of this problem in order to better 
place our results in the existing literature. First of all, as we have already mentioned it, the 
implemention of commuting and anticommuting fields into a single analytic scheme resulted 
into the development of several types of supermanifolds, of which, two main streams are the 
most followed: The theory of G-supermanifolds, and the theory of Berezin-Leites-Kostant 
supermanifolds (also called graded manifolds). Amongst the great number of articles deal- 
ing with these two approaches we refer the reader to [l 11 (specially Sections III and V) 
and [26] for a comparison between them from the physical point of view. From the mathe- 
matical point of view, on the other hand, G-supermanifolds are the closest to Dewitt’s [ 121 
and Rogers’ [23] original theory of supermanifolds; they furthermore satisfy Rothstein’s 
axiomatics [24]. Moreover, the category of G-supermanifolds contains as full subcategories 
several types of supermanifolds introduced earlier as separate theories (e.g., Dewitt, and 
H”, among others). An in-depth development of the category of G-supermanifolds can be 
found in the monograph [3]. On the other hand, Berezin-Leites-Kostant supermanifolds 
were independently introduced by Berezin and Leites [6,7,17], and by Kostant [ 161 (see 
also the book by Manin [ 191 for a thorough introduction to this theory). Actually, it has been 
established in [3] that there is a one-to-one correspondence between isomorphism classes 
of Dewitt supermanifolds and isomorphism classes of Berezin-Leites-Kostant superman- 
ifolds, although the correspondence is not a functorial one. 

Let us now recall the main properties of the cohomology theories on supermanifolds 
developed so far. First of all, a general Z-graded de Rham-like cohomology theory was 
constructed in [2] for G-supermanifolds (see also [3, IO]). This theory has been proved in [2] 
to be sensitive to the ‘super’ structure except when the given G-supermanifold is of Dewitt 
type; in the latter case the Z-graded de Rham cohomology is determined by the de Rham 
cohomology of the body (see [2,3,10,22]). For Berezin-Leites-Kostant supermanifolds 
on the other hand, there are at least six types of cohomology theories in the literature of 
which the author is aware of: (1) The Z-graded de Rham-like cohomology of even and 
odd forms (see [ 191). In this case a Poincare lemma can be proved and the corresponding 
cohomology becomes isomorphic to the de Rham cohomology of the underlying smooth 
manifold (see [ 16,193). (2) The B-graded cohomology of integral forms (see [S]). It is proved 
in [20] that the complex of integral forms is quasi-isomorphic to the ground field; therefore, 
this cohomology does not give any useful information about the supermanifold. (3) The 
ungraded cohomology of pseudodifferential forms developed in [9], which does not compare 
to anything in the graded context. (4) The H2-graded de Rham-like cohomology introduced 
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in [ 11, further developed in [30,3 11, and recasted in the monograph [32]. This theory emerges 
as a response to the problem of developing a non-trivially Z*-graded cohomology, not 
determined by the de Rham cohomology of the underlying smooth manifold, and thus 
giving an answer to problem (8) in the list of [ 181 (see also [2 1,291). The review of this 
particular theory is the main concern of this paper: It is proved here that this theory does not 
produce a suitable cohomology in the sense of problem (8) of [ 181. (5) The Z2-graded de 
Rham-like cohomology developed in [28]. A Z*-graded de Rham cohomology functor - not 
determined by the usual de Rham cohomology of the underlying manifold-was introduced 
there. It was shown that it does provide an answer to problem (8) of [ 181, and furthermore, 
that it satisfies the requirements in [21,29] for a suitable cohomology on Berezin-Leites- 
Kostant supermanifolds sensitive to the ‘super’ structure. (6) Finally, one may also consider 
the cohomology of the (isomorphism class of the) G-supermanifold of Dewitt type that 
corresponds to a given (isomorphism class of) Berezin-Leites-Kostant supermanifold under 
the correspondence layed out in [3]. This, however, cannot be compared to the problem 
we are dealing with in this paper. The first reason is that, whereas the first five theories 
we have recalled above are functorially defined within the category of Berezin-Leites- 
Kostant supermanifolds, the correspondence made in [3] is not functorial. Secondly, the 
‘Dewitt cohomology’ obtained this way for Berezin-Leites-Kostant supermanifolds does 
not provide non-trivially Z2-graded groups, and furthermore, it is completely determined 
by the cohomology of the body. 

Apart from its mathematical interest, cohomology of supermanifolds has various phys- 
ical applications; mainly related with quantization of supergauge and superstring theories 
(e.g., see [22]). It was pointed out in [33], for instance, the necessity of investigating the 
geometrical nature of the Batalin-Vilkovisky superspace formalism in the quantization of 
gauge field theories. It was argued in [ 141 that the reason for introducing antifields in the 
Batalin-Vilkovisky formalism is connected with the integration theory on supermanifolds; 
concretely, with the integration of pseudodifferential forms (as in [9]) and of the Z*-graded 
forms of [ 1,30-321. The relationship between Batalin-Vilkovisky formalism and these Z*- 
forms have been studied in [ 151 by making explicit use of the results of [30-321. On the 
other hand, the multi-loop superstring amplitude computed in [4,5] is based on the integra- 
tion theory of the Z*-graded forms of [30-321. Moreover, the integration and cohomology 
of the Z2-graded forms of [30-321 are used in [5] to provide a new geometrical approach 
to superstrings. It is at the light of these applications and developments that our findings 
become relevant, and might shed some light in the near future onto the problem of eluci- 
dating some relationships between integration, de Rham cohomology of Z*-graded forms, 
and its physical applications. 

In this paper supermanifolds are from now on Berezin-Leites-Kostant supermanifolds. 
It is organized as follows: We first recall in Section 2 the definitions of lagrangians, forms, 
and the operator d as given in [30-321. We show in Section 3 that d2 - as defined there - 
does not vanish, and we find out what are the precise conditions that must be added to 
the definition of forms in order that it does. The computation of the sheaves (resp. the 
cohomology) of the resultant complex is done in Theorems 11 and 15 (resp. Theorem 16) 
of Section 4. 
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2. Lagrangians and forms on supermanifolds 

We shall take the definitions from [ 1,30-321. Since Refs. [ 1,30,3 l] have been recapitulated 
in the book [32], we shall only refer to the later from now on. Our notation adheres essentially 
to that of [ 19,321 with the following convention: lower-case latin (resp. greek) indices are 
even (resp. odd), while upper-case latin indices may be even or odd. For instance, if (xA) 
is a system of local coordinates, the parity xA of xA is 

2 = x = 
( 

0 if A is lower-case latin, 
1 if A is lower-case greek. 

For any pair of non-negative integers r, s, the r Is-tangent superbundle to M is the fibered 
supermanifold n,, r : T’lsM --+ M, described in terms of local coordinates as follows: any 
system (xA) of local coordinates on U c M, dim(M) = (mo, mlbives rise to a system 
{xi} of local coordinates on the fibers on n,l,-I(U), with parities x$ = Au+ F, where the 
first group of capital letters A, B, . . . (resp. the second one F, G, .) are used to denote 
generic superindices in [ I, . . , mg +m I), dim(M) = (mo, m 1) (resp. subindices in FU \ [O)) 
whose parities are 

0 iflsA<oo, 0 - if 1 5 F 5 r, 

1 ifmo+l ~Aimo+ml, 
resp. F= 

1 ifr+l sF5r+s. 

The relationship between any two such systems on the fibers is yc = xB x;ayA18xB. 
These constructions are functorial: any morphism of supermanifolds ,f: M + N defines a 
morphism of fibered supermanifolds frl,: T’iSM + T’Is N which locally acts on the fibers 

as fyT,Y(~;?) = CB $af*(yA)la xB. With the notations of [ 191, T’I’M = T’M@fl T’M. 

We shall refer to [25,27] for a more intrinsic description of the tangent superbundles and 
their significance in the theory of supermanifolds. 

Finally, to simplify the notation in what follows, we introduce the following local differ- 
ential operators: _- WY Y & + (-l),G+A(,,G)----$$ ifF#G, 

aBA _ G F F G 
GF - a” 

a.x,Bax; 
ifF=G. 

We may now quote the following three definitions: 

Definition 1 [32, p. 571. W,ls(M) is defined to be the subsupermanifold of T’I’M locally 
singled out by the equations rank($) = s. The sheaf of rls-lagrangian on M is the sheaf 
of superfunctions on W, is (M). 

To stress that a r Is-lagrangian L locally depends on xA and on the matrix of coordinates 
xi, we write L = L(xA,x$) or L = L(xA,xl,. . . ,x,+) where xF, F = 1,. . . , r + s 

denotes the vector of coordinates xi, A = 1. . . .,mg +ml, dim(M) = (mo,ml). 
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Definition 2 [32, pp. 5658]. A r]s-lagrangian L on M is said to be a r]s-form on M if 

(1) 

(2) 

for any matrix g E GL(r/s), 

L (xA. FX,g,) = Ber(g)L(xA, x;), 

where Ber(g) is the berezinian of the matrix g. We refer ourselves to this equation as 
the berezinian condition. 
a:;(L) = 0. VA, B, F # G. 

These forms are functorial only with respect to the morphisms of supermanifolds f : M -+ 
N which satisfy f& (W,l, (M)) c W,l, (N). To ensure this inclusion one must be restricted 
to the strict subcategory of supermanifolds with morphisms which are immersions with 
respect to the odd variables. These morphisms are called proper morphisms [32, p. 571. 

Definition 3 [32, p. 581. The differential of a r Is-form L is the (r + 1 Is)-form 

dL = (-l)‘~$+, 
A 

-& - I’%;& 
B.F F 

Forms annihlated by d are called closed, and forms like dL are called exact. It is argued 
in [32, p. 611 that d*L = 0 for any form L, and therefore one can consider the quotient 
groups of closed forms modulo the exact ones. These are the cohomology groups proposed 
in [32] as a generalization to supermanifolds of the usual de Rham cohomology groups on 
manifolds. 

We will see in Section 3 that d2 does not necessarily vanish on r]s-forms. So there is 
neither complex of r Is-forms (as they are defined in Definition 2) nor cohomology of them 
(but see Definition 5). 

3. On the definition of r Is-forms 

In this section we prove that in order to ensure that d2L = 0 for any r Is-form L, L must 
satisfy not only Eqs. (1) and (2) in Definition 2 (as it is said in [32, pp. 57-58]), but moreover 
Eq. (2) in Theorem 4. 

First of all let us recall the following result: 

Theorem 4. Let M be a supermanifold and r, s E RJ. 
(1) There exists a morphism of sheaves of commutative groups 

Drls : (nrls)*uTd~M + (Jb+lls)*q-‘+ll’M 

locally written as (-1)’ C.X:+, -& - C,-l)“xi& 
A ( B.F F ) 



176 C. Victoriu/Journal of Geometry and Physics 26 (1998) 171-181 

(2) The sections L 0f(n~l,~)*C3~+~ which are solutions of the equations 

8&!(L) = 0, VA, B, F, G 

define a subsheaf F$ of 0M-modules of (~rls)*OT~~.yM. 

(3) Dr+ll,y o Dri.5 = 0 on F$. 

(4) u,,,(_?-$ c 5’~““. 

Proofi Part (I), resp. (2), is part (I), resp. (3), in Theorem 2.2.1 in [28] and part (3) 
is Proposition 2.2.1 in [28] (the notational correspondences are: superindices here are 
subindices in [28] and vice versa, and A, B, F, G here are G, F, B, A, resp. in [28].) 

0 

Since the proof of part (3) has special interest for us we shall sketch it here: 

Therefore, to obtain a subsheaf _?$ ofC?M-modules of (rrrls)*OTrl,,,,,, on which D2 vanishes 
one has to impose 8:$(L) = 0, F # G and moreover i3:; (L) = 0. This suggests that 
equations aFF - BA - 0 must be added to conditions acF - BA - 0, F # G in part (2) of Definition 2. 
Beside, let us now recall from [32, pp. 56-581 the variational considerations on which 
Definition 2 of r Is-forms are based. Let I and A4 be supermanifolds of dimension (r, s) and 
(m, n), respectively, and f: I + M be a proper morphism. From part (1) in Definition 2 the 
pullback f$ (L) of a r Is-form L on M is a section of the berezinian sheaf of I. Assuming 
that the underlying manifold I is compact and oriented, the action S(f, L) = [, f$ (L) is 
well defined, where II is the berezinian integral. By computing the variation of this action 
one obtains 

-=- 

where 

-=-- 

This is exactly the same as what is done in [32, p. 571. The mistake in the computantions 
of [32] is in the expansion of 6S/6xA - GL/SxA, which is 

B.F#G B.F 

instead of the expression given in [32, p. 571 where aBA FF(L) does not appear. So, these 
variational considerations as well as Theorem 4 suggest that conditions a:$ = 0 are 
indispensable in the definition of the searched complexes. In fact, it is easy to verify that 
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L = x’x2/x: is a local 01 l-form on Iwo’* such that d*L # 0. As a consequence, to make 
the definition of the complexes self-consistent Definition 2 has to be rewritten as: 

Definition 5. A r Is-lagrangian L on M is said to be a r Is-form on M if 
(1) for any matrix g E GL(rls), 

L (xA, T&&g) = Ber(g)L(xA,xg), 

where Ber(g) is the berezinian of the matrix g. We refer ourselves to this equation as 
the berezinian condition. 

(2) a,!;(L) = 0, VA, B. F, G. 

Remark 6. Observe that for purely even supermanifolds, that is manifolds, Definitions 2 
and 5 are equivalent, but it is not the case for general supermanifolds. 

From now on r Is-forms are always understood in the sense of Definition 5. 

4. Description of r (s-forms 

We use the following version of the Taylor expansion for local functions f on superman- 
ifolds of dimension (mc, ml) with respect to a system of coordinates xA where Z? = 0 for 
l~a~muandx~=lformu~c~~mu+mt: 

,f(xA) = c x”’ ..p .Lq...cm~W~ = c +v&“), 
045,n, k4?0 _ al<%+1 

wheregstandsforamulti-indexat -C ... < (Yk,ai E (mo + l,...,mo +ml}, k = 

I!4 = c; ai > 0 ( recall the assumptions on notations made in Section 2). For the sake of 
simplification, define A, u to be -_ 

(_l)l~l(I~l-1)/* 
al~l+l~l 

&+I . . axakaxal . . axak 

Then 

f(XA) = c 
xKxx’yA ,,f(O) + c ~~x%~f(0~ 

05lCJl5P lcrl=p+l 
(Ekr 0514 

where a is a multi-index a), . . , ak, a; E [ 1, . . . mo), lgl = xi a;. Therefore we have: 

Lemma 7. If a2 f /axAax ' = 0 'fA,B, hen f(xA) = Co51crl+r51 x"P,.,(x") where 

P,,,ER[X’,...,Xmo] is a polynomial of degree r. 

From the condition 3:; (L) = 0 and Lemma 7 we obtain for r + s = 1: 

L(XA,X,) = L(XA,O> + Xx? 
B 

$$(XA, 01, 
I 
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for r + s = 2: 

L(xA,.~,.x~)=L(xA,O,O)+~x~~(xA,O.O) 
B I 

+ xx:“ 
C'.C i ~(“A~o,O)+x~ax~~x’.~xA.O.O’ 

1 2 ) 
and inductively one has the following lemma. 

Lemma 8. If L is a r Is-lagrangian such that a!$ (L) = 0 VA, B, F then, locally 

where the number of even, resp. odd, indices Fi ‘s is 5 r, resp. _( s. 

Moreover. we have: 

Proposition 9. If L is a r Is-lagrangian which is a r IsYform, then the local coeficients of 
LI’,::;::2k in Lemma 8 satisfy 

L 
. ..F....F ,,“. 
. ..A ,... A ,,... + (--I) 

~A~,+(~+A~,)(~,+~,<,<,,~+~)~...~,-.-~,I-- 
. ..Ai..../,,... = '. 

Prooj These equations are straightforwardly obtained by imposing 8:: (L) = 0, VA, B. 
F # G to the expressions of Lemma 8. 0 

From Lemma 8 any rls-form L can be written as a sum CrC5r,s,<s L,+J where L,.+J is a 
r’ls-form with exactly r’ even indices Fi’s and exactly s’ odd indices Fi’s. This decompo- 
sition is not only local. It is global due to the homogeneity of the change of coordinates of 
the fibers of the tangent superbundles (recall Section 1). Forms of type L,ls will be called 
homogeneous r/s-forms. 

Definition 10. We denote the sheaf of UM-modules of homogeneous rls-forms on the 
supermanifold M as 622. i2~Kd denotes the sheaf of OMM,,d-modules of usual p-forms on 
the underlying manifold Mred of the supermanifold M. 

To have a complete description of 622 It remains to impose the berezinian condition. 
Before doing it, notice that it seems to be (and Theorem 11 below proves that actually, there 
is) an incompatibility between the conditions a/$ = OVA, B, F, G and the berezinian 
condition. Roughly speaking this incompatibility emerges from the fact that Proposition 9 
tells that forms are tensorial objects on the coordinates xi, but the berezinian condition is 
not tensorial due to the presence of a denominator in the definition of the berezinian. 

Theorem 11. For any supermanifold M it holds SZ$ = 0 'V'S > 0, Vr. 
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ProojI Let L be a homogeneous rls-form on the supermanifold M, dim(M) = (mn, ml). 
Let us consider the following cases: 

Case ml = 0: Definition 1 forces S2$ to be zero for any s > 0. 
Case m t > 0: Consider a homogeneous r Is-form L. Thanks to Lemma 8 it can be locally 

written as L = CA,F xi,’ . .x’$:f LI:::::+’ For any (Y E D6* let g, E GL(rls) be r+> 

The berezinian condition is as L = (1 /a”) L. This forces L to be identically zero. So 522 = 
ovs > 0. 0 

The next theorem identifies Sz”’ M . For that let us recall from [13, pp. 348-3501 the fol- 
lowing two definitions: 

Definition 12. The r-fold antisymmetric tensors of an C?M-module V is the subspace of 
8’ V composed of tensor changing sign under all Pj,jl, where 

Pjjf(XG: @“.8X; @‘.‘@X$@” 43X;;) 

= (_l)(j.j’)AXAl F, @ “. @ xc;’ @ . . .@x$,@...@x;;)_ 

(j, j’)A = & ATI + (4 + &t) (As I f. . . + A7 1). Such a tensor is a linear combination of 

elements of the form CUES, (- I )sgn(o)fmAX~~’ @ . . @ xi: where sgn(a) is the number 
of transpositions mod 2 of the permutation c, and aA is the representation generated by 
(j, j’)A. They constitute an C?M-module noted as AL. 

Definition 13. The sheaf of even r-forms on the supermanifold M is the 0M-module fib = 

qDer ou)*. There is a well-defined exterior differential d : 52; + L?z+] whose square is 
zero. (This complex has also been considered in [ 16, pp. 244-250; 19, pp. 168-1701.) 

Remark 14. If (dxA} is the dual of the local derivations {a/axA), then dxA dxB = 
-(-1)Ab dxBdxA (see [13]). 

Theorem 15. The complex (f2:“‘, d) is naturally isomorphic to the complex (tilt,, d) 

ProojI By Lemma 8 let us locally write any homogeneous (r]O)-form L as 

L = xx;’ .xfrLA;;JAk. 
A 

“’ j”’ I’“’ By Proposition 9 L,,.A,,,,A ;,,.. = (- l)‘g”(j,j’)+(j.j’)AL:jl:,:‘,r, ,,,. Then 

L = c c (_l)“““(u)+%q . .x;l”‘L;;]_(,Ak. 

A, ~A,+I DES, 
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Now, the natural local linear morphism 

c 
(_l)W’io)+&;nl . . x;(Tr + dXA’ . . . d.+ 

OES, 

commutes with d and d and induces a well-defined global isomorphism between (Qt”‘, d) 
and (52;, d). 0 

It is well known that fib is a locally free sheaf over (3~ and how each system of local 
coordinates on M induces a basis on it [ 13,16,19]. This gives a simple explicit description 
of the finite-dimensional module of rjs-forms. 

Notice that all the previous constructions and results are valid for supermanifolds over 
the ground field K = [w, @. That is why we write 0~ to denote the sheaf of superfunctions 
instead of CE which is the usual notation for the specific case K = [w. 

Finally let us show that the cohomology of the complex of ??lo-forms of an [W-differentiable 
supermanifold M is isomorphic to the usual de Rham cohomology of its underlying manifold 

Mred 

Theorem 16. For any R-d@erenciable supermanifold M, H’(s2$0, d) 2 H’(M,,d). 

Pro@ By Theorem 15 H’(Q$‘, d) 2 H’(M) and it is well known (see [ 161 or [ 191) that 
this later group is isomorphic to H’(Mred). ??
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